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Abstract We discuss a solar dynamo model of Tayler-Spruit type whose Ω-

effect is conventionally produced by a solar-like differential rotation but whose

α-effect is assumed to be periodically modulated by planetary tidal forcing.

This resonance-like effect has its rationale in the tendency of the current-driven

Tayler instability to undergo intrinsic helicity oscillations which, in turn, can

be synchronized by periodic tidal perturbations. Specifically, we focus on the

11.07 years alignment periodicity of the tidally dominant planets Venus, Earth,

and Jupiter, whose persistent synchronization with the solar dynamo is briefly

touched upon. The typically emerging dynamo modes are dipolar fields, oscil-

lating with a 22.14 years period or pulsating with an 11.07 years period, but

also quadrupolar fields with corresponding periodicities. In the absence of any

constant part of α, we prove the subcritical nature of this Tayler-Spruit type

dynamo. The resulting amplitude of the α oscillation that is required for dynamo

action turns out to lie in the order of 1 m/s, which seems not implausible for

the sun. When starting with a more classical, non-periodic part of α, even less

of the oscillatory α part is needed to synchronize the entire dynamo. Typically,

the dipole solutions show butterfly diagrams, although their shapes are not con-

vincing yet. Phase coherent transitions between dipoles and quadrupoles, which

are reminiscent of the observed behaviour during the Maunder minimum, can

be easily triggered by long-term variations of dynamo parameters, but may also

occur spontaneously even for fixed parameters. Further interesting features of

the model are the typical second intensity peak and the intermittent appearance

of reversed helicities in both hemispheres.
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1. Introduction

Asking “Is there a chronometer hidden deep in the sun?”, Dicke (1978) had
analyzed the similarity of the solar cycle with either a random walk process or,
alternatively, a clocked process being perturbed by random fluctuations. While
his statistical results pointed in favour of a clocked process, with shorter cycles
usually being followed by longer ones as if the Sun remembered the correct phase,
his conclusion was later criticized by Gough (1990) and Hoyng (1996) as relying
on a too short time series of just 25 cycles.

The closely related discussion, initiated by Wolf (1859) and later entered
by Bollinger (1952); Takahashi (1968); Wood (1972); Öpik (1972); Condon and
Schmidt (1975); Grandpierre (1996); Palus et al. (2000); Hung (2007); Wilson
(2013); Okhlopkov (2014); Poluianov and Usoskin (2014), of whether the Hale
cycle of the Sun is synchronized with the 11.07 years alignment cycle of the tidally
dominant planets Venus, Earth and Jupiter, was recently fueled by Okhlopkov
(2016) who demonstrated an amazing parallelism of both time series for the last
1000 years.
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Figure 1. (a) Time series of the minima of the solar cycle according to Schove (1955, 1983)
and Hathaway (2010), and of the maximum alignment of the Venus-Earth-Jupiter system. (b)
Deviation of the time series from a linear function f(n) = 11.07(n + 67) + 1000 of the cycle
number n.

In Figure 1(a) we illustrate the sequence tn of the solar minima, as taken from
Schove (1955, 1983) and Hathaway (2010), together with the corresponding se-
quence of the maximum Venus-Earth-Jupiter alignments according to Okhlopkov
(2016), which we have re-calculated and confirmed for the last 1000 years. In
Figure 1(b) we show in detail the deviations (or residuals) δn = tn − ((n+67)×
11.07+ 1000) of the three time series from a linear function of the cycle number
n, with a presumed cycle duration of 11.07 years. Note the persistent closeness
of the solar cycle to this linear curve, which does not even change during the
Maunder (Beer, Tobias and Weiss, 1998) and Spörer (Miyahara et al., 2006)
minima. While there is no evidence for any local clocking between the maximum
Venus-Earth-Jupiter alignments and the cycle duration, both data sets remain
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globally clocked, with the solar minima instants never leaving a ±4.5 years band
around the linear trend with 11.07 years period.

If we take those data of Schove and Hathaway (with all due caveats regarding
their reliableness and accuracy before the year 1600, say), we can recompute

Dicke’s ratio
∑

24

i=n δ2i /
∑

24

i=n(δi − δi−1)
2 of the mean square of the residuals δi

to the mean square of the differences δi−δi−1 between two subsequent residuals.
As stated by Dicke, the dependence of this ratio on the number N = 24−n+1 of
cycles taken into account reads (N+1)(N2−1)/(3(5N2+6N−3)) for a random
walk process and (N2 − 1)/(2(N2 + 2N + 3)) for a clocked process. Hence, for
N → ∞, the random walk ratio converges towards N/15, while the clocked
process ratio converges to 0.5. Both curves are shown in Figure 2, together with
Dicke’s ratio computed for the actual Schove/Hathaway data (violet dots). While
Dicke’s original database was restricted to 25 cycles starting approximately at
1705, which made it hard to draw a solid conclusion about the character of the
process, the enlarged database of Schove indicates that the real process proceeds
(for large N) much closer to a clocked process than to a random walk process.
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Figure 2. Dicke’s ratio between the mean square of the residuals to the mean square of the
differences of two subsequent residuals in dependence on the number N of cycles taken into
account, for a random walk process (green line, converging towards N/15), a clocked process
(blue line, converging towards 0.5), and the real solar cycle minima data (violet dots) from
Schove and Hathaway. Despite the deterioration of the data’s reliableness and accuracy for the
time before 1600, a tendency towards a clocked process can still be observed. This becomes
even more pronounced (orange dots) when a data-fitted Suess-de Vries type cycle (yielding a
period of 202 years) is subtracted from the data.

This feature becomes even more pronounced (orange dots) if we first subtract
from the data a noticable Suess-de Vries type cycle (yielding a period of 202
years when fitted to the Schove/Hathaway data between the years 1000 and
2009). Then, the overshoot peak around the year 1800 is strongly reduced. Down
to the year 1400 a further convergence towards the ultimate value 0.5 could even
be expected, and the slight increase prior to this year might be guessed to be
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caused by the deteriorating accuracy of a data. At any rate, it seems worthwhile
(but goes far beyond the scope of this paper) to look for better quality data for
those early years, and to study the influence of the long-term cycles (Gleissberg,
Suess-de Vries, Eddy) in a more systematic manner.

However impressive that coincidence of the solar cycle with a clocked process
in general, and with the maximum Venus-Earth-Jupiter alignments in particular,
may look like: the counter-arguments against any sort of external synchroniza-
tion are serious as well. Indeed, the typical tidal acceleration of those planets
(in the order of 10−10m/s2) is tiny compared to other acceleration terms in
the sun (Condon and Schmidt, 1975; De Jager and Versteegh, 2005; Calle-
baut, de Jager, and Duhau, 2012). Even if the typical tidal height of htidal =
GmR2

tacho
/(gtachod

3) ≈ 1mm (exerted by a planet of mass m at distance d
from the Sun) could be fully translated into a corresponding velocity of v ∼
(2gtachohtidal)

1/2 ≈ 1m/s (employing the huge gravity at the tachocline of
gtacho ≈ 500m/s2 (Wood, 2010)), a physically realistic synchronization mech-
anism based on these tides is still hardly conceivable.

Although the competing forces in the convection zone are prohibitively large
for any planetary synchronization mechanism to get a chance to work there,
things may be more subtle in the stably stratified tachocline region. A promising
idea about a putative planetary influence, as first discussed by Abreu et al.

(2012), relies on periodic tidal perturbations of the adiabaticity in the tachocline
region, whose value is decisive for its storage capacity for magnetic flux tubes.
While primarily discussed with view on long-term modulations of the solar dy-
namo, there is no prior reason not to apply the same concept to the basic Hale
cycle as well. In a recent paper (Stefani et al., 2018) we made a first attempt to
validate this idea in the framework of a simplified Babcock-Leighton type model,
employing the time-delay concept of Wilmot-Smith et al. (2006). Specifically, the
tidal perturbations were emulated as periodic changes of the critical magnetic
field strength beyond which flux tubes would erupt to the solar surface. Although
our results, obtained in a limited parameter region, were essentially negative, we
still consider this synchronization mechanism as rather attractive, and would
like to encourage further work in this direction.

Yet another promising synchronization mechanism was first delineated by
Weber et al. (2015) and later corroborated in detail by Stefani et al. (2016, 2018).
It starts from the numerical observation that the current-driven, kink-type Tayler
instability (TI) (Tayler, 1973; Pitts and Tayler, 1985; Gellert, Rüdiger, and
Hollerbach, 2011; Seilmayer et al., 2012; Rüdiger, Kitchatinov, and Hollerbach,
2013; Rüdiger et al., 2015; Stefani and Kirillov, 2015) has an intrinsic tendency
for oscillations of the helicity and the α-effect related to it.

At this point, a few general remarks on kink-type instabilities, and their appli-
cability to stellar dynamo models, may be appropriate: the notion Tayler-Spruit
dynamo referred originally to the idea of Spruit (2002) who had proposed a non-
linear, subcritical dynamo in which the poloidal-to-toroidal field transformation
is conventionally accomplished by the Ω-effect, while the toroidal-to-poloidal
transformation starts only when the toroidal field acquires sufficient strength
to become unstable to the non-axisymmetric, current-driven TI. A fundamental
flaw of this dynamo concept was revealed by Zahn, Brun, and Mathis (2007)
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who argued that any emerging non-axisymmetric (m = 1) TI mode would be
topologically unsuitable for regenerating the dominant axisymmetric (m = 0)
toroidal field. Fortunately, the same authors offered a possible remedy for the
Tayler-Spruit dynamo concept provided that the m = 1 TI would produce an
α-effect (comprising some m = 0 component). In hindsight, it appears that this
idea had been investigated more than a decade earlier by Ferriz Mas, Schmitt,
and Schüssler (1994). Working in the flux-tube approximation, these authors
had derived the α-effect connected with the kink-instability and pointed out its
crucial importance for closing the dynamo loop.

Beyond flux-tube approximation, the existence of any TI-related α-effect
is still a matter of debate. Various authors (Chatterjee et al., 2011; Gellert,
Rüdiger, and Hollerbach, 2011; Bonanno et al., 2012, 2017) had evidenced spon-
taneous symmetry breaking between left- and right-handed TI modes, leading
indeed to a finite value of α, but mainly for comparably large values of the
magnetic Prandtl number [Pm], i.e., the ratio between viscosity and magnetic
diffusivity. Things are different, though, for the case of low Pm, as it is typical for
the solar tachocline region where Pm is believed to lie in the range 10−3...10−2.
In this limit of small Pm, we had numerically observed (although in the sim-
plified geometry of a full cylinder) a tendency of the TI to undergo oscillations

of the helicity and the α-effect (Weber et al., 2013, 2015). Remarkably, those
oscillations between left- and right-handed m = 1 TI modes do barely change
the energy content of the instability, which makes them very susceptible to weak
m = 2 perturbations (Stefani et al., 2016). This fact may indeed be the key for
the easy synchronizability of the α-effect with the tiny tidal forces as exerted by
planets.

The resonant reaction of α on tidal excitations was later incorporated into
a very simple ordinary differential equation (ODE) model of an α − Ω dynamo
which turned out to produce oscillations with period doubling (Stefani et al.,
2016). In this way it was argued that the 11.07 years tidal perturbations could
lead to a resonant excitation of an 11.07 years oscillation of the TI-related α-
effect, and thereby to a 22.14 year Hale cycle of the entire dynamo.

In Stefani et al. (2018), it was specified that such field oscillations occur
only in certain bands of the magnetic diffusion time τ , while for intervening
bands they were replaced by field pulsations with 11.07 years period. Noteworthy
was the persistent phase coherence when passing from oscillations to pulsations,
and back. What could not be resolved by this simple ODE system (despite
some progress in Stefani et al. (2017)) was the spatio-temporal specifics of the
transitions between oscillations and pulsations, for which higher dimensional
modeling is definitely required.

As a sequel to Stefani et al. (2016, 2018), the present paper investigates this
spatio-temporal behaviour of a tidally synchronized dynamo of the Tayler-Spruit
type. For that purpose, we replace the ODE system by a partial differential
equation (PDE) system with the co-latitude as the only spatial variable. Similar
radially averaged, pseudo-Cartesian models (although without any synchroniza-
tion aspect) have been studied by many authors (Parker, 1955; Schmalz and
Stix, 1991; Jennings and Weiss, 1991; Roald and Thomas, 1997; Kuzanyan and
Sokoloff, 1997), which will allow us, in Section 2 and the Appendix, to compare
and validate our numerical method.
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In Section 3, we will analyze in detail a synchronized, subcritical dynamo
of Tayler-Spruit type in its purest form. For that purpose, we use a latitudinal
dependence of the Ω-effect as inferred from helioseismology (Charbonneau et al.,
1999), and restrict the α-effect to its 11.07 years periodic part whose ampli-
tude has the same resonance-like dependence on the toroidal field as originally
proposed in Stefani et al. (2016). Since, for weak fields, this resonance term
is proportional to the square of the field, it cannot yield a linear instability.
Instead, the dynamo needs some finite field amplitude to start off. Apart from a
detailed discussion of the dependence of this sub-critical dynamo on the initial
conditions, we will also argue that the typical resulting amplitudes of α are on the
order of 1 m/s, which seems not unrealistic for the solar dynamo. Depending on
some parameter choices, the arising fields are dipoles or quadrupoles, which can
either oscillate with a 22.14 years period or pulsate with an 11.07 years period.
We also observe intermediate states between oscillations and pulsations, which
are reminiscent of the Gnevyshev-Ohl rule (Gnevyshev and Ohl, 1948), which
states that the sunspot numbers over an odd cycle exceeds that of the preceding
even cycle. During transitions between dipoles and quadrupoles, hemispherical
dynamos are partly observed, too.

The oscillatory dipole solutions show, for high latitudes, poleward migration
(“rush to the poles”), and for low latitudes a sort of butterfly diagram in the
correct direction, although its form is not completely convincing yet. Further
interesting features to be discussed here are a second intensity maximum, com-
parable to the double peak of the solar dynamo, and the intermediate appearance
of reversed helicities in the two hemispheres. The latter fact, which is a direct
consequence of the synchronized, oscillatory character of α, might be related to
the current-helicity observations of Zhang et al. (2010); Pipin et al. (2013).

In section 4, we will soften the pure Tayler-Spruit principle by combining the
periodic part of α with a more standard, non-periodic term that is asymmetric
with respect to the equator and only quenched by the toroidal field in the conven-
tional manner. In the limiting case of a conventional α − Ω dynamo we obtain
dipoles or quadrupoles with typical periods between 20 and 40 years. When
adding to this standard dynamo our resonant periodic α term, we can easily
enslave the dynamo to the 22.14 years periodicity, partly with some intermediate
2:3 synchronization to a 33.21 years period. Remarkably, the amplitude of the
oscillatory part of α that is required for this synchronization turns out to be
significantly smaller (below 1 m/s) than the typical values needed for the purely
non-linear dynamo as discussed above. By increasing the oscillatory part of α
we obtain then a sequence of oscillatory quadrupoles, hemispherical dynamos,
dipoles with a strong Gnevyshev-Ohl tendency, and regularly oscillating dipoles.
When adding some noise to the non-periodic α term, the conventional α − Ω
model and the synchronized “hybrid” model exhibit typical features of a random
walk process and a clocked process, respectively, as will be illustrated by Dicke’s
ratio.

In section 5, we show how long-term changes of various dynamo parameters
(e.g., the portion of the periodic α part or the term which governs field losses
by magnetic buoyancy) are capable of producing transitions between dipole and
quadrupole fields, a behaviour for which some observational evidence exists from
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the Maunder minimum (Sokoloff and Nesme-Ribes, 1994; Arlt, 2009; Moss and
Sokoloff, 2017; Weiss and Tobias, 2016). A robust feature of our synchronization
model is the phase coherence which is maintained throughout such transitions.

The paper closes with a summary, a discussion of open questions, including the
applicability of the general idea to other m = 1 instabilities or flow structures,
in particular the recently discussed magneto-Rossby waves of the tachocline
(McIntosh et al., 2017; Dikpati et al., 2017; Zaqarashvili, 2018), and a call for
higher dimensional simulations of this type of tidally synchronized solar dynamo
model.

2. The numerical model

In this section we set-up the dynamo model and discuss its numerical implemen-
tation. We work with a system of partial differential equations, whose spatial
variable is restricted to the solar co-latitude θ. While similar models have been
utilized by a number of authors (Parker, 1955; Schmalz and Stix, 1991; Jennings
and Weiss, 1991; Roald and Thomas, 1997; Kuzanyan and Sokoloff, 1997), we
use the specific formulation of Jennings and Weiss (1991).

We focus on the axisymmetric magnetic field which is split into a poloidal
component BP = ∇× (Aeφ) and a toroidal component BT = Beφ. Introducing
the helical turbulence parameter α and the radial derivative ω = sin(θ)d(Ωr)/dr
of the azimuthal velocity, we arrive at the one-dimensional α−Ω dynamo model

∂B(θ, t)

∂t
= ω(θ, t)

∂A(θ, t)

∂θ
+

∂2B(θ, t)

∂θ2
− κB3(θ, t) (1)

∂A(θ, t)

∂t
= α(θ, t)B(θ, t) +

∂2A(θ, t)

∂θ2
, (2)

wherein A(θ, t) represents the vector potential of the poloidal field at co-latitude
θ (running between 0 and π) and time t, and B(θ, t) the corresponding toroidal
field. Here, α and ω denote the non-dimensionalized versions of the dimensional
quantities αdim and ωdim, according to α = αdimR/η and ω = ωdimR

2/η, where
R is the radius of the considered dynamo region (we will later use here the radius
of the tachocline) and η is the magnetic diffusivity which is connected with the
conductivity σ via η = 1/(µoσ). The time is non-dimensionalized by the diffusion
time, i.e. t = tdimη/R

2.
The not so familiar term κB3(θ, t), as introduced by Jones (1983); Jennings

and Weiss (1991), has been included to account for losses owing to magnetic
buoyancy, on the assumption that the escape velocity is proportional to B2.
While this term is not essential for our synchronization model, it may provide
a link to the idea of Abreu et al. (2012) that variations of the adiabaticity, and
hence of the field storage capacity, in the tachocline could explain the effect of
weak tidal forces on long-term variations of the solar dynamo.

The boundary conditions at the north and south pole are A(0, t) = A(π, t) =
B(0, t) = B(π, t) = 0.

This PDE system is solved by a finite-difference scheme using the Adams-
Bashforth method. We have validated the numerical method by checking the
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convergence and comparing it with some results of Jennings and Weiss (1991)
for the paradigmatic case with α(θ) = α0 cos(θ) and ω(θ) = ω0 sin(θ). Even with
such a simple model one can obtain butterfly diagrams, although one has to be
careful with their interpretation. Details can be found in the Appendix.

Throughout the rest of the paper, we employ a θ-dependence of the ω-effect
in the form

ω(θ) = ω0(1− 0.939− 0.136 cos2(θ) − 0.1457 cos4(θ)) sin(θ) , (3)

as derived from helioseismological measurements (Charbonneau et al., 1999;
Charbonneau, 2010). Note that ω(θ), which is changing sign at θ = 55◦ and
125◦, is assumed to be constant in time. We use a plausible value of ω0 = 10000
which results from taking the measured 460 nHz frequency at the equator, an
estimated tachocline thickness of 1/10 of its approximate radius R = 5× 108 m,
and an assumed value of η = 7.16 × 107 m2/s. This somewhat peculiar value,
which lies close to the upper margin of the commonly used values 106...108 m2/s
(Charbonneau, 2010) corresponds to a diffusion time τ = R2/η = 110.7 years,
which is just a factor 10 times larger than the period of the tidal forcing.

Much less than for ω(θ) is known for the corresponding distribution of the
α effect which we, in general, suppose to comprise a non-periodic part αc and
a time-periodic part αp. The non-periodic contribution αc represents the tra-
ditional α effect, which is related to the non-mirror symmetric part of the
turbulence. It will be equipped with the typical north-south asymmetry and
a simple algebraic quenching with the magnetic field strength, as it has been
utilized in many solar dynamo models. The oscillatory contribution αp, however,
relies on the observation (Weber et al., 2015) that the TI at low magnetic Prandtl
numbers (which applies to the tachocline) has a tendency to undergo oscillations
of the helicity, and that those helicity oscillations can be resonantly excited by
m = 2 tidal-like perturbations (Stefani et al., 2016), without (or barely) changing
the energy content of the instability. The specific forms of both parts of α will be
discussed further below. At any rate, the saturation of the dynamo is exclusively
accomplished by the magnetic field dependence, i.e. the quenching of α, while ω
remains unchanged, as stated above.

3. Synchronizing a pure Tayler-Spruit dynamo model

In this section, we illustrate the variety of dynamo solutions that arise under
the influence of an α-effect that is supposed to oscillate with an 11.07 years
period and to have a specific B-dependent amplitude which reflects the resonance
condition of the periodic tidal trigger with the intrinsic oscillation of the TI-
related α effect (Weber et al., 2015; Stefani et al., 2016). By virtue of this B-
dependence of α, this model can only yield sub-critical dynamo action, a fact
that will be proven in the following. The specific effects of combining the periodic
α-term with a more conventional, non-periodic α-term will be assessed in the
next section.
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3.1. Specifying the α-effect

The time-periodic part αp is actually at the root of our synchronization model.
A serious uncertainty applies to the θ-dependence of this term in general, and
its equatorial symmetry/asymmetry in particular. A closely related issue is its
“smoothing” character, i.e. whether and how αp(θ, t) depends also on B at
neighbouring latitudes and previous times.

As a first attempt, we will use an αp-dependence on B that is instantaneous
in t and local in θ, the latter assumption corresponding to a sort of flux-tube ap-
proximation. In reality, some averaging over time and space, realized by integral
kernels, seems more appropriate. Any concretization of this idea is, however, left
for future work.

As for the latitudinal symmetry property of αp we will start with the plausible
assumption that it has the same north-south asymmetry as is usually assumed
for the non-periodic part. This relies on the observation of Rüdiger, Kitchatinov,
and Hollerbach (2013) that, under the additional influence of a poloidal field,
the helicity of the TI-related α-effect is governed by the pseudo-scalar B ·∇×B

(rather than by the pseudo-scalar g ·∇×Ω, formed with the stratification vector
g and the global rotation Ω). Although this argument applies, first of all, to the
non-oscillatory part of α for which it predicts a positive value in the northern
and a negative value in the southern hemisphere, we extend here this equatorial
asymmetry also to the oscillatory part. That this is in no way self-evident, and
should be scrutinized in future work, can be inferred from the work of Proctor
(2007) who obtained for his fluctuating α−Ω model an averaged induction term
that is symmetric about the equator.

In contrast to Rüdiger, Kitchatinov, and Hollerbach (2013), we further assume
that αp is restricted to the ±35◦ strip around the equator, since this is the
region with positive radial shear where the TI may have time to develop, not
being overrun by the faster magnetorotational instability (MRI) that might be
dominant in the near-pole regions characterized by negative radial shear (Kagan
and Wheeler, 2014; Jouve, Gastine and Lignieres, 2015). While this restriction
to the ±35◦ strip sounds plausible also with view on the restriction of sunspots
to this area, with regard to the key role of the ±55◦ latitude region for starting
the dynamo cycle (McIntosh et al., 2015), the entire argument might not be that
convincing. We will come back to this point in the conclusions.

Thus motivated, we start with the following parametrization for αp(θ, t):

αp(θ, t) = αp
0
sin(2πt/11.07)

B2(θ, t)

(1 + qpαB4(θ, t))
S(θ) for 55◦ < θ < 125◦

= 0 elsewhere , (4)

where the B-dependent term is supposed to have the typical resonance-type
structure ∼ B2/(1 + qpαB

4) as already used in the ODE system (Stefani et al.,
2016). Note that the latitudinal dependence

S(θ) = sgn(90◦ − θ)

×

[

1−

(

1 + tanh

(

θ/180◦ − 0.5

0.2

))(

1− tanh

(

θ/180◦ − 0.5

0.2

))]

(5)
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comprises a smoothing term around the equator in order to avoid a numerically
inconvenient steep jump of α here.

At any rate, αp(θ, t) is not pre-given but co-evolves with the solution of the
PDE system. For its interpretation we recall the connection to the dimensional
value, α = αdimR/η, which leads (with R = 5 × 108 m , η = 7.16 × 107 m2/s)
to αdim = α/6.98 m/s. That is, all values shown in the following figures should
be divided by a factor 7 to get the physical value αdim in m/s. Note that, since
we have used a comparably high value of η, the resulting values of αdim should
be considered an upper limit and might in reality be significantly smaller. The
constant term αc

0 is set to a very small, but non-zero value of 0.001.
Since for the sub-critical dynamo type to be studied here the initial conditions

play an essential role, we state them explicitly:

A(θ, 0) = s sin(θ) + u sin(2θ) (6)

B(θ, 0) = −s sin(2θ)− u sin(θ) . (7)

Both pre-factors s and u, which denote symmetric and asymmetric components
for A, are usually set to some non-zero value, in order not to suppress artificially
any relevant modes.

3.2. The case κ = 0

Figure 3 shows the behaviour of B(θ, t) for the specific parameter choice ω0 =
10000, κ = 0, qpα = 0.2, and the initial conditions s = 3 and u = 0.001, when
varying the strength of the the periodic α term, i.e αp

0
between 16.1 (a) and 150

(f). Evidently, the dynamo starts only for αp
0
= 16.2 (b), while it still dies out

for the slightly smaller value αp
0
= 16.1 (a).

Also interesting is the distinction between a quadrupole, pulsating with 11.07
years period, that arises for αp

0
= 16.2 (b), and the pulsating dipole (also with

11.07 years period) into which the field evolves for αp
0
= 16.3 (c). This pulsating

dipole persists then also for the three higher values αp
0
= 30 (d), 70 (e), 150 (f).

Some detailed features of this dynamo behaviour are illustrated in Figure 4
for another value αp

0
= 100 (which would lie between panels (e) and (f) of Figure

3). Complementary to B (a), the poloidal field A (b) shows clearly the pulsating
dipolar field structure. While ω is kept constant over time (see Equation (3)),
the behaviour of α(θ, t) (c) is more interesting: Restricted, by construction, to
the ±35◦ strip around the equator (i.e. 55◦ < θ < 125◦), its dependence on B
leads to typical sign changes in both hemispheres, a feature that could possibly
be linked to the reversed current helicity as intermittently observed on the sun
(Zhang et al., 2010).

3.3. The case κ 6= 0

Up to this point, the final state of the dynamo was, somewhat disappointing,
either a pulsating quadrupole or a pulsating dipole. In the following we will also
find oscillatory dipoles when going over to κ 6= 0, i.e. when allowing for some
magnetic field loss due to rising flux tubes. The results are illustrated for the
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Figure 3. Behaviour of B(θ, t) of the synchronized Tayler-Spruit dynamo with a nearly pure
periodic αp term. The fixed parameters are ω0 = 10000, κ = 0, αc

0
= 0.001 qpα = 0.2, the

initial conditions are s = 3 and u = 0.001, and the varying parameter is αp

0
= 16.1 (a), 16.2

(b), 16.3 (c), 30 (d), 70 (e), 150 (f). Note that, here and throughout the paper, the ordinate
axis represents not the co-latitude θ but the normal solar latitude 90◦ − θ.

specific choice κ = 1. With all remaining parameters unchanged (i.e. ω0 = 10000,
qpα = 0.2, s = 3 and u = 0.001), Figure 5 shows the behaviour of B(θ, t) when
varying the amplitude of αp

0
now between 21.2 (a) and 150 (f). Evidently, since

the additional field losses have to be compensated, the dynamo starts now only
for αp

0
= 21.5 (b), while dying out for the slightly smaller value αp

0
= 21.2 (a).

Whereas for αp
0
= 21.5 (b) and αp

0
= 23 (c) the initially prescribed dipole

finally gives way to a quadrupole oscillating with 22.14 years period, for αp
0
= 50

(d) it recovers after a short excursion (between 110...130 years) to a hemi-
spherical and quadrupolar mode. While such spontaneous dipole-quadrupole
transitions are found here only in certain parameter regions, we will later see
that they can be easily triggered by changing such parameters as the amplitude
of αp or the loss parameter κ. For αp

0
= 70 (e) and αp

0
= 150 (f) we obtain very

regular dipole oscillations, although in either case with a clear Gnevyshev-Ohl
tendency.
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Figure 4. Behaviour of B(θ, t) (a), A(θ, t) (b), and α(θ, t) (c). Parameters as in Figure 3, but
with αp

0
= 100.

Again, we illustrate in Figure 6 the detailed behaviour for the particular value

αp
0
= 100, which lies between panels (e) and (f) of Figure 5. Actually, the results

exhibit some interesting features which are not untypical for the sun. First, (a)

shows for high latitudes the typical “rush to the poles”, while for low latitudes

we see a sort of butterfly slightly tending equator-ward. Admittedly, the shape of

this butterfly is not convincing yet, and it remains to be seen whether this shape

can be improved in higher-dimensional simulations, including also the meridional

circulation.

Second, the Gnevyshev-Ohl tendency becomes clearly visible with the “blue

field” in the northern hemisphere being stronger than the “red field” (and vice

versa in the southern hemisphere). Closely related to that feature, the α values

in (c) show also some symmetry breaking between positive and negative values.
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Figure 5. Behaviour of B(θ, t) of the synchronized Tayler-Spruit dynamo with a periodic αp

term. The fixed parameters are ω0 = 10000, κ = 1, qpα = 0.2, the initial conditions are s = 3
and u = 0.001, and the varying parameter is αp

0
= 21.2 (a), 21.5 (b), 23 (c), 50 (d), 70 (e), 150

(f).

3.4. The subcritical character of the Tayler-Spruit dynamo

Now we address the subcritical nature of the dynamo which is, in terms of
a high sensitivity on the initial conditions, illustrated in Figure 7. We choose
again ω0 = 10000, κ = 0, qpα = 0.2, u = 0.001, but vary now the initial value
of the dipole strength s in a narrow interval between 0.707 and 0.73. The value
of αp

0
= 100 is chosen to lie between 70 (cp. Figure 3(e)) and 150 (Figure 3(f)).

Remarkably, the dynamo starts only when s ≥ 0.708 (b), while the slightly
weaker initial perturbation s = 0.707 (a) dies away at large times. Further to
this, between s = 0.729 (c) and s = 0.73 (d) the dynamo field changes from a
pulsating quadrupole to a pulsating dipole.

The subcritical behaviour is summarized in Figure 8 which shows the dynamo
threshold in the αp

0
− s plane, for the three specific loss parameters κ = 0, 0.5

and 1. Each of the points in this graphic has been determined by evaluating the
dynamo/non-dynamo behaviour at a few points in its vicinity. For large values
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Figure 6. Behaviour of B(θ, t) (a), A(θ, t) (b), and α(θ, t) (c). Parameters as in Figure 5, but
with αp

0
= 100.

of αp
0
we obtain the typical subcritical s ∼ (αp

0
)−0.5 behaviour, which means

that the necessary initial condition can be lowered (with the square-root) when
the dynamo strength is increased. Also typical for a subcritical bifurcation is the
“rugged” left boundary, which is reminiscent of a similar fractal shape found for
pipe flows (Eckhardt et al., 2008). We only mention here that a similar subcritical
behaviour can also be obtained, with less numerical effort, for the ODE case.

4. Synchronizing a hybrid dynamo

Having verified the subcritical nature of the pure Tayler-Spruit model, we will
now reinstate the effect of the more traditional part of α which we parametrize,
for the sake of convenience, as

αc(θ, t) = αc
0
(1 + ξ(t)) sin(2θ)

1

(1 + qcαB
2(θ, t))

, (8)
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Figure 7. Behaviour of B(θ, t) of the synchronized α − Ω model with the fixed values
Ω0 = 10000, αp

0
= 100, κ = 0, qpα = 0.2, u = 0.001 and the variable initial conditions

s = 0.707 (a), 0.708 (b), 0.729 (c) and 0.73 (d).
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Figure 8. Stability boundaries in the αp

0
− s plane, for the three values κ = 0, 0.5 and 1 and

qpα = 0.2, u = 0.001. Note the left “rugged” boundary at low values of αp

0
. For large values of

αp

0
, the boundary converges to s ∼ (αp

0
)−0.5.

where αc
0 is a constant and ξ(t) denotes a noise term to be specified further

below. The factor sin(2θ) ensures the typical north-south asymmetry as it is
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often assumed for conventional α−Ω dynamos. Interestingly, the same symmetry
argument would also apply to a TI-related, non-oscillatory α term under the
influence of an additional poloidal field (Rüdiger, Kitchatinov, and Hollerbach,
2013; Rüdiger et al., 2018). Therefore, any such non-oscillatory contribution of
the TI-related α effect could be consistently absorbed into Equation (8).

4.1. Noise-free case

Let us start with the noise-free case, i.e. ξ(t) = 0, for which we consider first a
purely conventional α−Ω dynamo, by skipping the periodic part completely, i.e.
by choosing αp

0
= 0. Figure 9 shows the time evolution for increasing intensity

of the constant part, i.e. αc
0
= 0.6 (a), 0.8 (b), 1 (c), 4 (d), 10 (e) and 40 (f). The

other parameters are ω0 = 10000, qcα = 0.8, κ = 0.5. While the field clearly dies
out for αc

0 = 0.6 (a), for αc
0 = 0.8 it seems to recover very slowly, and for αc

0 = 1,
we get a clear dynamo with an oscillatory quadrupole which also prevails for
αc
0 = 4 (d) and αc

0 = 10 (e). At αc
0 = 40 (e), the dynamo field undergoes several

changes and ends up in a dipole field pulsating with a period of approximately
27 years. Note that we have here extended the time period to 500 years in order
to show all relevant transitions which are partly very slow.

What happens now if we complement this standard α − Ω dynamo with the
periodic α term? For the four specific choices αc

0 = 1, 4, 10, 40 (cp. Figure 9
(c-f)), we show in Figure 10 the resulting dynamo period when cranking up
the value of αp

0
. For each considered value of αc

0
, we ultimately obtain a clear

synchronization to a 22.14 years period when the value of αp
0
reaches a certain

critical value. In cases that the original period is higher (αc
0
= 1 and 4), we also

observe an intermediate 2:3 synchronization to a 33.21 years period. Remarkably,
the value of αp

0
, where the final synchronization to 22.14 years is accomplished,

can be significantly smaller than the typical αp
0
needed for the pure Tayler-Spruit

dynamo to start (cp. Figure 8).
For the specific value αc

0
= 4 (cp. the green line in Figure 10), Figure 11

illustrates the complexities of this synchronization. While for the low value αp
0
=

1 (a) we obtain the nearly unperturbed oscillatory quadrupole, αp
0
= 4 (b) yields

now the intermediate 2:3 synchronization into a fluctuating quadrupole. Shortly
after leaving this 2:3 synchronization regime, αp

0
= 6 (c) provides a sort of

hemispherical field with 22.14 years period, whose dominating hemisphere is,
however, changing with an approximately 200 years periodicity. Increasing αp

0

further to 10 (d), we observe a dipole oscillating with a strong Gnevyshev-Ohl
tendency. αp

0
= 50 produces a wild transition between oscillatory dipoles and

pulsating quadrupoles at later times. Very regular dipole oscillations appear
then at αp

0
= 150. This way, we obtain a transition from the conventional α−Ω

dynamo via a hybrid dynamo to a (nearly) pure Tayler-Spruit dynamo, and
synchronization starts at a certain fraction of the oscillatory part of α.

More details of this hybrid dynamo behaviour can be seen in Figure 12,
documenting the special case αc

0
= 4 and αp

0
= 12 (similar to Figure 11d). Here

the direction of the butterfly diagram for low latitudes is not very well expressed.
Quite interesting is the α effect of panel (c) which shows now, not surprisingly
due to the presence of αc, a preponderance of positive values in the northern,
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Figure 9. Behaviour of B(θ, t) of the traditional α − Ω dynamo without periodic term, i.e.
with αp

0
= 0. The fixed parameters are ω0 = 10000, κ = 0.5, qc

α
= 0.8, qpα = 0.2, the initial

conditions are s = 1 and u = 0.001, and the varying parameter is αc

0
= 0.6 (a), 0.8 (b), 1 (c),

4 (d), 10 (e), 40 (f).

and negative values in the southern hemisphere. The remaining oscillatory part,
which has a reasonable amplitude of approximately 0.5 m/s (recall the necessary
division by 7 to get the physical values), is sufficient to synchronize the entire
dynamo.

Another interesting aspect becomes visible in Figure 12(a,b), and is quantified
in detail in Figure 13 which shows B(θ = 72◦, t) and A(θ = 72◦, t). It refers to
the occurrence of a double peak of the field amplitude, which is even clearer
expressed in the poloidal field A than in the toroidal field B. This double peak
is a quite typical feature of the solar dynamo and has been discussed, e.g., in
Karak, Mandal and Banarjee (2018). It might also be worthwhile to check the
relation of this double peak to the so-called ”mid-term”periodicities (between
0.5 and 4 years) of the solar activity, as found and discussed by several authors
(Obridko and Shelting, 2007; Valdés-Galicia and Velasco, 2008; McIntosh et al.,
2015; Bazilevskaya et al., 2016).
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Figure 10. Resonance with the external frequency when increasing αp

0
, for four different

values of αc

0
= 1, 4, 10, 40, whose αp

0
= 0 limit corresponds to panels (c), (d), (e) and (f) of

Figure 9, respectively.

4.2. The role of noise

Having seen that a conventional α− Ω dynamo with an intrinsic frequency can
be synchronized by adding a periodic α term, we ask now about the specific
influence of noise on the behaviour of these two types of models. In either case,
we augment the non-periodic part of α by a noise term ξ(t) defined by the
correlator 〈ξ(t)ξ(t+t1)〉 = D2(1−|t1|/tcorr)Θ(1−|t1|/tcorr), which is numerically
realized by random numbers with variance D2 which are held constant over a
correlation time tcorr. In the following, we will choose, somewhat arbitrarily,
tcorr = 0.55 years, which is at any rate significantly shorter than the solar cycle.
We start with a pure α− Ω model with αp

0
= 0, αc

0 = 10, ω0 = 10000, qcα = 0.8,
qpα = 0.2, κ = 0.5, which corresponds to the leftmost point of the blue curve in
Figure 10. For D = 0.3, the rightmost curves (marked by circles) of Figure 14(a)
illustrate three specific noise realizations, which all exhibit long-term, large-
amplitude excursions around their linear trends (note that we have used, for the
sake of easy comparison, the same scales as in Figure 1). Dicke’s ratio for these
three curves is shown then, using the same colours, in Figure 14(b). Despite
large deviations of the individual curves, we observe a clear resemblance to the
∼ N/15 dependence as typical for a random walk process.

Things are different, though, for the hybrid dynamo. In addition to the param-
eters indicated above, we choose now αp

0
= 5, which lies well in the synchronized

part of the blue curve of Figure 10. The resulting three leftmost time-series
(marked by squares) in Figure 14(a) now remain much closer to the linear trend,
without undergoing long-term excursions. It is evident, however, that the noise
alleviates any local clocking with the periodic forcing, while the global clocking
is well maintained. Unsurprisingly, Dicke’s ratio for these time series in Figure
14(b) is quite close to the ideal curve for a clocked process. This clear difference
between a random walk process and a clocked process, as evidenced in our two

SOLA: stefani_final.tex; 28 May 2019; 2:46; p. 18



A model of a tidally synchronized solar dynamo

      3
   2.25
    1.5

   0.75
      0

  -0.75
   -1.5
  -2.25
     -3

0 100 200 300 400 500

t [yr]

-80

-60

-40

-20

0

20

40

60

80

La
tit

ud
e 

[d
eg

re
e]

     12
      9
      6
      3
      0
     -3
     -6
     -9
    -12

0 100 200 300 400 500

t [yr]

-80

-60

-40

-20

0

20

40

60

80

La
tit

ud
e 

[d
eg

re
e]

      4
      3
      2
      1
      0
     -1
     -2
     -3

0 100 200 300 400 500

t [yr]

-80

-60

-40

-20

0

20

40

60

80

La
tit

ud
e 

[d
eg

re
e]

      8
      6
      4
      2
      0
     -2
     -4
     -6
     -8

0 100 200 300 400 500

t [yr]

-80

-60

-40

-20

0

20

40

60

80

La
tit

ud
e 

[d
eg

re
e]

      4
      3
      2
      1
      0
     -1
     -2
     -3
     -4

0 100 200 300 400 500

t [yr]

-80

-60

-40

-20

0

20

40

60

80

La
tit

ud
e 

[d
eg

re
e]

      3
   2.25
    1.5

   0.75
      0

  -0.75
   -1.5
  -2.25
     -3

0 100 200 300 400 500

t [yr]

-80

-60

-40

-20

0

20

40

60

80

La
tit

ud
e 

[d
eg

re
e]

(b) (e)

(c) (f)

(d)(a)

Figure 11. Behaviour of B(θ, t) of the traditional α − Ω combined with increasing αp

0
. The

fixed parameters are ω0 = 10000, κ = 0.5, qc
α

= 0.8, qpα = 0.2, αc

0
= 4, the initial conditions

are s = 1 and u = 0.001, and the varying parameter is αp

0
= 1 (a), 4 (b), 6 (c), 10 (d), 50 (e),

150 (f).

numerical models, makes it indeed worthwhile to validate or improve Schove’s
data on which the curves in Figures 1 and 2 were based on.

5. Modeling grand minima

In contrast to the idea of a hard synchronization of the basic Hale cycle with
planetary tidal forces, as pursued in this paper, much more interest is commonly
devoted to the possibility of a soft modulation of the solar activity, with partic-
ular focus on the Gleissberg, Suess-de Vries, Hallstadt, and Eddy cycles (Jose,
1965; Charvatova, 1997; Abreu et al., 2012; Wolf and Patrone, 2010; Scafetta,
2010, 2014; McCracken, Beer and Steinhilber, 2014; Cionco and Soon, 2015;
Scafetta et al., 2016). While far from being settled (see, e.g., Cameron and
Schüssler (2013) for a critical assessment), any such planetary influence could
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Figure 12. Behaviour of B(θ, t) (a), A(θ, t) (b), and α(θ, t) (c). Parameters as in Figure 11,
but with αp
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values of αp
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have enormous consequences for the predictability not only of the solar dynamo
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the right side) undergo long-term excursions, while the time-series for the hybrid dynamo
(with squares, on the left side) remain much closer to the linear trend. (b) Dicke’s ratio in
dependence on the number N of cycles taken into account, for a random walk process (green
line, converging towards N/15), a clocked process (blue line, converging towards 0.5), and the
two triples of time series as shown in (a).

but, possibly, of the terrestrial climate, too (Hoyt and Schatten, 1997; Gray

et al., 2010; Solanki, Krivova and Haigh, 2013; Scafetta, 2013; Ruzmaikin and

Feynman, 2015; Soon et al., 2014). It is, therefore, worthwhile to figure out

whether our model can explain modulations of the solar cycle, including extreme

cases such as the Maunder and other grand minima.

We had already seen above (Figure 5d and Figure 11e) that for some pa-

rameter choices transitions between dipoles and quadrupoles can even occur

spontaneously, which indicates a high sensitivity of the corresponding dynamo

with respect to minor parameter variations. Based on this observation, we study

here the transition between the two field topologies when allowing the ratio of

αp to αc to vary with a long period, for which we take here 550 years just for

the sake of concreteness (at a comparably 506 years period, Abreu et al. (2012)

found a peak both in the solar modulation potential and the annually averaged

planetary torque modulus).

Using the fixed parameters ω0 = 10000, αc
0 = 1, κ = 1 qpα = 0.2, qcα = 0.8, we

consider now αp
0
in Equation (4) as time-dependent and vary its value between

27 and 90 according to αp
0
(t) = 90(1 − 0.7 sin2(2πt/1100)). This function has

maxima at t = 0, 550 and 1100, and minima at t = 225 and 775. Figure 15 shows

the results: at the first minimum of αp
0
, around t=225, the dipolar field is just

weakened and does not undergo a transition to a quadrupole, while exactly this

happens at the second minimum, after t=775, where the dipole shortly vanishes

and gives way to a quadrupole field before coming back again around t = 900.

This difference in behaviour at the first and second minimum of αp
0
indicates

a high sensitivity of these transitions. Note that in particular the transition

between quadrupole and dipole looks similar to that after the Maunder minimum

(Arlt (2009); Moss and Sokoloff (2017)).
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Most important here is the phase memory during all these transitions. This

feature brings us back to the amazing persistence of the solar cycle, even during

the Maunder minimum, as it was demonstrated in Figure 1.
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Figure 15. Behaviour of B(θ, t) (a), A(θ, t) (b), and α(θ, t) (c) showing transitions between
dipole and quadrupole fields when varying αp

0
according to αp

0
(t) = 90(1−0.7 sin2(2πt/1100)).

The fixed parameters are Ω0 = 10000, αc

0
= 1, κ = 1 qpα = 0.2, qc

α
= 0.8.

Figure 16 shows a similar result which we obtain when varying the loss term

κB3 in Equation (1). As noticed above, that term is supposed to account for the

field losses due to magnetic buoyancy. Variations of this term might, therefore, be

related to variations of the adiabaticity, and hence of the field storage capacity,

in the tachocline, an effect that was proposed by Abreu et al. (2012) to explain

the impact of weak tidal forces on (long-term) variations of the solar dynamo.

Again we see that these variations can lead to transitions between dipoles and

quadrupoles. This means that, while only a synchronization of α seems to be

strong enough to accomplish the ”hard synchronization” of the basic Hale cycle,

there is still a good chance that the long-term variations of the solar cycle may

also result from tidal effects on the adiabaticity in the tachocline.
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Figure 16. Behaviour of B(θ, t) (a), A(θ, t) (b), and α(θ, t) (c) showing transitions between
dipole and quadrupole fields when varying κ according to κ(t) = 1(1 − 0.6 sin2(2πt/1100)).
The fixed parameters are Ω0 = 10000, αc

0
= 4, αp

0
(t) = 100 qpα = 0.2, qc

α
= 0.8.

6. Discussion and outlook

As a sequel to our previous studies (Stefani et al., 2016, 2018), this paper
was concerned with the spatio-temporal behaviour of a tidally synchronized
dynamo of the Tayler-Spruit type, and its combination with a more conventional
α − Ω-dynamo. Utilizing a solar-like latitudinal dependence of the Ω-effect,
and assuming a plausible latitudinal dependence of the TI-related, periodic
α-effect, we have regularly found dipole or quadrupole fields with 22.14 years
periodic oscillations or 11.07 years periodic pulsations. Intermediate states be-
tween oscillations and pulsations, reminiscent of the Gnevyshev-Ohl rule, as
well as hemispherical fields, were observed, too. Under the influence of noise,
the synchronized model maintained its character as a (globally) clocked process,
while a conventional α − Ω model had much closer resemblance to a random
walk process.

With appropriate changes of the relative weights of the periodic and the non-
periodic α-terms, or by varying the loss term accounting for magnetic buoyancy,
it was easily possible to induce transitions between different field topologies,
while maintaining phase coherence during all those transitions. The subcritical
nature of the pure Tayler-Spruit type model was confirmed, too.
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The considered “hybrid” version of our synchronized dynamo, which builds
on the conventional α−Ω concept and requires only weak periodic α forcing for
synchronization, is quite attractive for the following reason: In the context of
analyzing the two branches of main-sequence stars, separated by the Vaughan-
Preston gap (around 2-3 Gyr, Vaughan and Preston (1980)), the Sun appears
as an ordinary, slowly rotating (older) star showing a typical activity period
in the usual 10 years range, in contrast to faster rotating younger stars which
show partly a shorter and strongly varying (7.6±4.9 years) periodicity, but in
general a rather irregular temporal behavior (Soon, Baliunas and Zhang, 1993;
Olah et al., 2016). A bold explanation for the relation between cycle period
and rotation period, as observed for older stars, would have to assert that all
of them were synchronized by a similar mechanism as discussed here. Since this
scenario is rather unlikely (all those stars would need planetary systems with
a dominant tidal periodicity in the same order of 10 years), we are in no way
opposed to traditional dynamo concepts yielding typical activity periods in the
order of 10 years. We suggest, however, that in particular cases such as our sun,
those conventional dynamos could be synchronized by planetary tidal forcing.
Our hybrid version thus remedies the general fitting of our Sun into the cycle
period/rotation period relation of older stars with the specific synchronization of
the Sun’s dynamo as suggested by the time series of Figure 1 and the remarkable
behaviour of Dicke’s ratio shown in Figure 2. Unfortunately, similar statistical
arguments as for the sun, which are based on tens or even hundreds of cycles,
can not be inferred from the much shorter databases as available for other stars
(Soon, Baliunas and Zhang, 1993; Olah et al., 2016).

Two interesting features, which were already salient in the zero-dimensional
model of Stefani et al. (2016), have been confirmed in the 1D model: these are
the appearance of a double peak of the field (best seen in the poloidal field), and
the intermediate emergence of reversed helicities in the two hemispheres. Both
effects can indeed be related to corresponding observational facts.

Hence, our Tayler-Spruit type dynamo model, based on a tidally synchronized
TI-related α-effect, might have acquired greater plausibility by evincing a num-
ber of spatio-temporal features which are typical for the solar magnetic field.
We hope that these results are promising enough to motivate more advanced
2D or 3D simulations. It remains to be seen whether the evident weaknesses of
the model, in particular the unconvincing shape of butterfly diagram, can be
mitigated by such an advanced modelling. Just as more traditional concepts of
the solar dynamo, our model might still require an enhancement by meridional
circulation in order to show butterfly diagrams in their full beauty. It is here
where also the specific role of the ±55◦ latitude region for starting the dynamo
cycle (McIntosh et al., 2015) might find an explanation, which could not be
provided by our simple 1D model.

We would also point out that the main idea of our model, that the helicity
of an m = 1 instability can be synchronized even by a weak periodic m = 2
tidal perturbation, with the energy content of the instability being essentially
unchanged, is not necessarily restricted to the very Tayler instability but might
well be applicable to other m = 1 instabilities or flow features, too. A prelimi-
nary study has shown, for example, a comparable synchronization effect for the
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m = 1 dominated Large Scale Circulation (LSC) in Rayleigh-Bénard convection
(Galindo, 2018). Similar synchronization mechanisms have been discussed in
connection with the m = 1 eigenmode in the von-Kármán-sodium (VKS) dy-
namo experiment (Giesecke, Stefani, and Burguete, 2012; Giesecke, Stefani, and
Herault, 2017). It seems also worthwhile to examine the same α synchronization
concept fot the recently discussed Rossby waves of the tachocline (McIntosh
et al., 2017; Dikpati et al., 2017; Zaqarashvili, 2018). The strong dependence of
these waves on the gravity parameter would bring back into play the concept of
a tidal influence on the adiabaticity as proposed by Abreu et al. (2012).

Finally, we note that a completely new perspective for synchronization may
arise from the recent observation that positive shear flows, such as in the near-
equator parts of the tachocline, are susceptible to a new kind of axisymmetric,
double-diffusive MRI, as long as both azimuthal and axial fields are present
(Mamatsashvili et al., 2018).
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Appendix

In this appendix, we validate our numerical model by considering again the model
of Jennings and Weiss (1991) which includes a (not very physical) quenching of
the Ω-effect by the back-reaction of the magnetic field in the specific form

ω(θ, t) = ω0 sin(θ)/(1 + qωB
2(θ, t)) , (9)

while leaving the α-effect unaffected. Fixing α0 = −1 and the quenching param-
eter qω = 1, Figure 17 shows the arising spatio-temporal dynamo behaviour for
two different values ω0 = 170 (a,b,c) and ω0 = 250 (d,e,f). The first row (a,d)
shows B(θ, t), the second row shows A(θ, t), and the third row shows ω(θ, t) (we
skip α(θ) = α0 cos(θ) because it is time-independent). Interestingly, depending
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on the value of ω0, the system develops a butterfly diagram pointing either away
from (a) or towards (d) the equator. In either case, the direction follows basically
the isolines of ω, see (c) and (f), according to a theorem by Yoshimura (1975).
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Figure 17. Spatio-temporal behaviour of a simple α − Ω model with pure Ω-quenching, for
two different intensities of the differential rotation, ω0 = 170 (a-c), and ω0 = 250 (d-f). The
upper two panels (a,d) show B(θ, t), the central two panels (b,e) show A(θ, t), the lower two
panels (c,f) show ω(θ, t). Note the ”wrong” butterfly direction for ω0 = 170 (a), and the correct
direction for ω0 = 250 (d). In either case, the toroidal flux (a,d) is mainly transported along
the isolines of ω(θ, t) (see c,f), according to Yoshimura’s rule.
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DOI.

Giesecke, A., Stefani, F., Herault, J.: 2017, Parametric instability in periodically perturbed
dynamos. Phys. Rev. Fluids 2, 053701.

Gnevyshev, M.N., Ohl, A.I.: 1948, On the 22-year cycle of solar activity. Astron. J. 25, 18-20
DOI.

Gough, D.O.: 1990, On possible origins of relatively short-term variations in the solar structure.
Phil. Trans. R. Soc. London A 330, 627 DOI.

Grandpierre, A.: 1996, On the origin of solar cycle periodicity. Astrophys. Space Sci. 243, 393
DOI.

Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U., Fleit-
mann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel, B.,
White, W.: 2010, Solar influences on climate. Rev. Geophys. 48, RG4001 DOI.

Hathaway, D.H.: 2010, The solar cycle. Liv. Rev. Sol. Phys. 7, 1 DOI

Hoyng, P.: 1996, Is the solar cycle timed by a clock? Solar Phys. 169, 253
Hoyt, D.V., Schatten, K.H.: 1997, The Role of the Sun in Climate Change, Oxford University

Press, New York.
Hung, C.-C.: 2007, Apparent relations between solar activity and solar tides caused by the

planets. NASA/TM-2007-214817.
Jennings, R.L., Weiss, N.O.: 1991, Symmetry breaking in stellar dynamos. Mon. Not. R. Astr.

Soc. 252, 249 DOI.

SOLA: stefani_final.tex; 28 May 2019; 2:46; p. 27

http://dx.doi.org/10.1023/A:1005026001784
http://dx.doi.org/10.1103/PhysRevE.86.016313
http://dx.doi.org/10.1002/asna.201713300
http://dx.doi.org/10.1016/j.jastp.2012.03.005
http://dx.doi.org/10.1051/0004-6361/201221713
http://dx.doi.org/10.1086/308050
http://dx.doi.org/10.12942/lrsp-2010-3
http://dx.doi.org/10.1023/A:1006527724221
http://dx.doi.org/10.1103/PhysRevE.84.025403
http://dx.doi.org/10.1016/j.newast.2014.07.001
http://dx.doi.org/10.1007/BF00149930
http://dx.doi.org/10.1007/s11207-005-4086-7
http://dx.doi.org/10.1038/s41598-017-14957-x
http://dx.doi.org/10.1098/rsta.2007.2132
http://dx.doi.org/10.1111/j.1365-2966.2011.18583.x
http://dx.doi.org/10.1103/PhysRevE.86.066303
http://dx.doi.org/10.1103/PhysRevFluids.2.053701
http://dx.doi.org/10.1098/rsta.1990.0043
http://dx.doi.org/10.1007/BF00644709
http://dx.doi.org/10.1029/2009RG000282
http://dx.doi.org/10.12942/lrsp-2010-1
http://dx.doi.org/10.1093/mnras/252.2.249


F. Stefani et al.

Jones, C.A.: 1983, Model equations for the solar dynamo. Stellar and Planetary Magnetism,

Edited by A.M. Soward. New York: Gordon and Breach Science Publishers, 193.
Jose, P.D.: 1965, Sun’s motion and sunspots. Astron. J. 70, 193 DOI.
Jouve, L., Gastine, T., Lignieres, F.: 2015, Three-dimensional evolution of magnetic fields in

a differentially rotating stellar radiative zone. Astron. Astrophys. 575, 21 DOI.
Kagan, D., Wheeler, J.C.: 2014, The role of the magnetorotational instability in the sun.

Astrophys. J. 787, A106 DOI.
Karak, B.B., Mandal, S., Banarjee, D.: 2018, Double-peaks of the solar cycle: an explanation

from a dynamo model. Astrophys. J. 866, 17 DOI.
Kuzanyan, K.M., Sokoloff, D.: 1997, Half-width of a solar dynamo wave in Parker’s migratory

dynamo. Solar Phys. 173, 1 DOI.
Mamatsashvili, G., Stefani, F., Hollerbach, R., Rüdiger, G.: 2018, New type of axisymmetric
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